Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Heliyon ; 10(7): e28595, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571581

RESUMO

Background: Dietary nutrient intake contributes to urination; however, the association between dietary nutrient intake, especially that of fat, and urinary incontinence (UI) is not well understood. The most common types of UI include stress UI (SUI) and urgency UI (UUI). Objective: To investigate the potential effect(s) of dietary fat intake on UI and explore its mechanism of action in relation to body mass index (BMI). Methods: A cross-sectional survey of data from 15,121 individuals (20-85 years of age) from the National Health and Nutrition Examination Survey (2001-2008), a random population-based sample, was performed. Data regarding dietary nutrient intake were collected through 24 h dietary recall interviews. UI and covariate data were collected through in-person interviews. UI was assessed according to the American Urological Association Symptom Index. The odds ratio (OR) for SUI and UUI were calculated using multivariate logistic regression analysis. The mediation effect was estimated using observational mediation analysis. Results: Higher total fat intake was positively associated with increased odds for developing UI (OR 1.44 [95% confidence interval (CI) 1.08-1.93]). Females who consumed more saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) were more likely to develop SUI. BMI partially explained the association between total fat, SFA, MUFA, and PUFA and SUI; the proportions of the mediation effect of BMI were 14.7%, 13.0%, 18.7%, and 16.3%, respectively. Conclusions: Results of this study emphasize the key role of dietary fat intake in the prevalence of UI. Higher fat intake was positively associated with UI and BMI partially mediated the effect of fat intake on SUI.

2.
Mater Today Bio ; 26: 101051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633867

RESUMO

Commonly, articular osteochondral tissue exists significant differences in physiological architecture, mechanical function, and biological microenvironment. However, the development of biomimetic scaffolds incorporating upper cartilage, middle tidemark-like, and lower subchondral bone layers for precise articular osteochondral repair remains elusive. This study proposed here a novel strategy to construct the trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment of both mechanical and biological factors. The cartilage-specific microenvironment was achieved through the grafting of kartogenin (KGN) into gelatin via p-hydroxyphenylpropionic acid (HPA)-based enzyme crosslinking reaction as the upper cartilage layer. The bone-specific microenvironment was achieved through the grafting of atorvastatin (AT) into gelatin via dual-crosslinked network of both HP-based enzyme crosslinking and glycidyl methacrylate (GMA)-based photo-crosslinking reactions as the lower subchondral bone layer. The introduction of tidemark-like middle layer is conducive to the formation of well-defined cartilage-bone integrated architecture. The in vitro experiments demonstrated the significant mechanical difference of three layers, successful grafting of drugs, good cytocompatibility and tissue-specific induced function. The results of in vivo experiments also confirmed the mechanical difference of the trilayered bionic scaffold and the ability of inducing osteogenesis and chondrogenesis. Furthermore, the articular osteochondral defects were successfully repaired using the trilayered biomimetic hydrogel scaffolds by the activation of endogenous recovery, which offers a promising alternative for future clinical treatment.

3.
Adv Mater ; : e2401009, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548296

RESUMO

Tissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self-powered devices. However, due to their susceptibility to moisture, TENGs have to be encapsulated in vivo. Therefore, existing TENGs cannot be employed as tissue engineering scaffolds, which require direct interaction with surrounding cells. Here, the concept of triboelectric scaffolds (TESs) is proposed. Poly(glycerol sebacate), a biodegradable and relatively hydrophobic elastomer, is selected as the matrix of TESs. Each hydrophobic micropore in multi-hierarchical porous TESs efficiently serves as a moisture-resistant working unit of TENGs. Integration of tons of micropores ensures the electrotherapy ability of TESs in vivo without encapsulation. Originally hydrophobic TESs are degraded by surface erosion and transformed into hydrophilic surfaces, facilitating their role as tissue engineering scaffolds. Notably, TESs seeded with chondrocytes obtain dense and large matured cartilages after subcutaneous implantation in nude mice. Importantly, rabbits with osteochondral defects receiving TES implantation show favorable hyaline cartilage regeneration and complete cartilage healing. This work provides a promising electronic biomedical device and will inspire a series of new in vivo applications.

4.
Regen Biomater ; 11: rbae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414795

RESUMO

Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.

5.
Adv Mater ; 36(14): e2310704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168750

RESUMO

In the era of information, characterized by an exponential growth in data volume and an escalating level of data abstraction, there has been a substantial focus on brain-like chips, which are known for their robust processing power and energy-efficient operation. Memristors are widely acknowledged as the optimal electronic devices for the realization of neuromorphic computing, due to their innate ability to emulate the interconnection and information transfer processes witnessed among neurons. This review paper focuses on memristor-based neuromorphic chips, which provide an extensive description of the working principle and characteristic features of memristors, along with their applications in the realm of neuromorphic chips. Subsequently, a thorough discussion of the memristor array, which serves as the pivotal component of the neuromorphic chip, as well as an examination of the present mainstream neural networks, is delved. Furthermore, the design of the neuromorphic chip is categorized into three crucial sections, including synapse-neuron cores, networks on chip (NoC), and neural network design. Finally, the key performance metrics of the chip is highlighted, as well as the key metrics related to the memristor devices are employed to realize both the synaptic and neuronal components.


Assuntos
Computadores , Redes Neurais de Computação , Encéfalo , Neurônios/fisiologia , Sinapses
6.
ACS Omega ; 9(1): 1113-1124, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222628

RESUMO

The strategy for introducing diluents is a critical practical concern in diluted combustion; however, a comprehensive understanding of the effects of fuel-side dilution versus air-side dilution is currently lacking. This numerical investigation systematically studied the effects of dilution strategies on methane coflow diffusion flames, with a focus on the flame structure and flame length. Common additives in practical combustion, specifically H2O and CO2, were introduced to either the fuel or the air streams, with dilution ratios (Z) ranging from 0 to 0.2, and the impacts of four dilution strategies were quantified and ranked. Detailed simulations were conducted using a well-validated two-dimensional (2D) flame code to gain a deep understanding of OH formation, flame attachment, temperature of the burner nozzle, and flame height. Systematic analyses in terms of heat transfer, molecular diffusion, and chemical kinetics were conducted. Results demonstrate that introducing diluents into the air stream exerts a more profound influence on suppressing OH formation compared with fuel-side dilution. Moreover, air-side dilution has a negligible influence on flame attachment, while increasing Z on fuel side significantly inhibits flame attachment, and the latter behavior is attributed to the diminished mass diffusion of CH4 toward the oxidizer side. As the flame attachment weakens, it causes a consequential reduction in heat transfer from the flame base to the burner. Accordingly, the nozzle temperature exhibits a more remarkable decrease with the fuel-side dilution ratio than with the air-side dilution ratio. Simultaneously, a more profound influence of Z on flame length was observed for fuel-side dilution than for air-side dilution, and the underlying mechanisms governing these two distinct dilution strategies were theoretically elucidated.

7.
Cell Prolif ; 57(3): e13554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37767639

RESUMO

'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardisation of extracellular vesicles derived from human stem cells.


Assuntos
Vesículas Extracelulares , Células-Tronco , Humanos , China
8.
Adv Sci (Weinh) ; 11(9): e2305580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127989

RESUMO

Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFß/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.


Assuntos
Osso e Ossos , Hidrogéis , Osteogênese , Regeneração Óssea , Engenharia Tecidual
9.
ACS Biomater Sci Eng ; 10(1): 515-524, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150512

RESUMO

Immunoregulatory and vascularized microenvironments play an important role in bone regeneration; however, the precise regulation for vascularization and inflammatory reactions remains elusive during bone repair. In this study, by means of subcutaneous preimplantation, we successfully constructed demineralized bone matrix (DBM) grafts with immunoregulatory and vascularized microenvironments. According to the current results, at the early time points (days 1 and 3), subcutaneously implanted DBM grafts recruited a large number of pro-inflammatory M1 macrophages with positive expression of CD68 and iNOS, while at the later time points (days 7 and 14), these inflammatory cells gradually subsided, accompanying increased presence of anti-inflammatory M2 macrophages with positive expression of CD206 and Arg-1, indicating a gradually enhanced anti-inflammatory microenvironment. At the same time, the gradually increased angiogenesis was observed in the DBM grafts with implantation time. In addition, the positive cells of CD105, CD73, and CD90 were observed in the inner region of the DBM grafts, implying the homing of mesenchymal stem cells. The repair results of cranial bone defects in a rat model further confirmed that the subcutaneous DBM xenografts at 7 days significantly improved bone regeneration. In summary, we developed a simple and novel strategy for bone regeneration mediated by anti-inflammatory microenvironment, prevascularization, and endogenous stem cell homing.


Assuntos
Matriz Óssea , Osteogênese , Humanos , Ratos , Animais , Xenoenxertos , Matriz Óssea/metabolismo , Matriz Óssea/transplante , Células-Tronco , Anti-Inflamatórios/metabolismo
10.
ACS Nano ; 18(1): 14-27, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153841

RESUMO

Memristors, promising nanoelectronic devices with in-memory resistive switching behavior that is assembled with a physically integrated core processing unit (CPU) and memory unit and even possesses highly possible multistate electrical behavior, could avoid the von Neumann bottleneck of traditional computing devices and show a highly efficient ability of parallel computation and high information storage. These advantages position them as potential candidates for future data-centric computing requirements and add remarkable vigor to the research of next-generation artificial intelligence (AI) systems, particularly those that involve brain-like intelligence applications. This work provides an overview of the evolution of memristor-based devices, from their initial use in creating artificial synapses and neural networks to their application in developing advanced AI systems and brain-like chips. It offers a broad perspective of the key device primitives enabling their special applications from the view of materials, nanostructure, and mechanism models. We highlight these demonstrations of memristor-based nanoelectronic devices that have potential for use in the field of brain-like AI, point out the existing challenges of memristor-based nanodevices toward brain-like chips, and propose the guiding principle and promising outlook for future device promotion and system optimization in the biomedical AI field.

11.
NPJ Regen Med ; 8(1): 67, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092758

RESUMO

Our previous work demonstrated the tendon-derived extracellular matrix (ECM) extracts as vital niches to specifically direct mesenchymal stem cells towards tenogenic differentiation. This study aims to further define the effective ECM molecules capable of teno-lineage induction on human adipose-derived stem cells (hASCs) and test their function for tendon engineering. By detecting the teno-markers expression levels in hASCs exposed to various substrate coatings, collagen I (COL1) and fibromodulin (FMOD) were identified to be the key molecules as a combination and further employed to the modification of poly(L-lactide-co-ε-caprolactone) electrospun nanoyarns, which showed advantages in inducting seeded hASCs for teno-lineage specific differentiation. Under dynamic mechanical loading, modified scaffold seeded with hASCs formed neo-tendon in vitro at the histological level and formed better tendon tissue in vivo with mature histology and enhanced mechanical properties. Primary mechanistic investigation with RNA sequencing demonstrated that the inductive mechanism of these two molecules for hASCs tenogenic differentiation was directly correlated with positive regulation of peptidase activity, regulation of cell-substrate adhesion and regulation of cytoskeletal organization. These biological processes were potentially affected by LOC101929398/has-miR-197-3p/TENM4 ceRNA regulation axis. In summary, COL1 and FMOD in combination are the major bioactive molecules in tendon ECM for likely directing tenogenic phenotype of hASCs and certainly valuable for hASCs-based tendon engineering.

12.
Small ; : e2308918, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38149504

RESUMO

Bioinspired tactile devices can effectively mimic and reproduce the functions of the human tactile system, presenting significant potential in the field of next-generation wearable electronics. In particular, memristor-based bionic tactile devices have attracted considerable attention due to their exceptional characteristics of high flexibility, low power consumption, and adaptability. These devices provide advanced wearability and high-precision tactile sensing capabilities, thus emerging as an important research area within bioinspired electronics. This paper delves into the integration of memristors with other sensing and controlling systems and offers a comprehensive analysis of the recent research advancements in memristor-based bionic tactile devices. These advancements incorporate artificial nociceptors and flexible electronic skin (e-skin) into the category of bio-inspired sensors equipped with capabilities for sensing, processing, and responding to stimuli, which are expected to catalyze revolutionary changes in human-computer interaction. Finally, this review discusses the challenges faced by memristor-based bionic tactile devices in terms of material selection, structural design, and sensor signal processing for the development of artificial intelligence. Additionally, it also outlines future research directions and application prospects of these devices, while proposing feasible solutions to address the identified challenges.

13.
Nat Commun ; 14(1): 8489, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123562

RESUMO

In-sensor and near-sensor computing are becoming the next-generation computing paradigm for high-density and low-power sensory processing. To fulfil a high-density and efficient neuromorphic visual system with fully hierarchical emulation of the retina and visual cortex, emerging multimodal neuromorphic devices for multi-stage processing and a fully hardware-implemented system with versatile image processing functions are still lacking and highly desirable. Here we demonstrate an emerging multimodal-multifunctional resistive random-access memory (RRAM) device array based on modified silk fibroin protein (MSFP), exhibiting both optoelectronic RRAM (ORRAM) mode featured by unique negative and positive photoconductance memory and electrical RRAM (ERRAM) mode featured by analogue resistive switching. A full hardware implementation of the artificial visual system with versatile image processing functions is realised for the first time, including ORRAM mode array for the in-sensor image pre-processing (contrast enhancement, background denoising, feature extraction) and ERRAM mode array for near-sensor high-level image recognition, which hugely improves the integration density, and simply the circuit design and the fabrication and integration complexity.

14.
Front Microbiol ; 14: 1216018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029129

RESUMO

Introduction: Bananas are not only an important food crop for developing countries but also a major trading fruit for tropical and semitropical regions, maintaining a huge trade volume. Fusarium wilt of banana (FWB) caused by Fusarium oxysporum f. sp. cubense is becoming a serious challenge to the banana industry globally. Biological control has the potential to offer both effective and sustainable measures for this soil-borne disease. Methods: In order to explore the biocontrol effects of the biological agent Bacillus amyloliquefaciens QST713 strain on banana plants, two cultivars, Brazilian and Yunjiao No. 1, with varied resistance to FWB, were used in greenhouse pot experiments. Results: Results showed that the plant height and pseudostem diameter of banana-susceptible cultivar Brazilian increased by 11.68% and 11.94%, respectively, after QST713 application, while the plant height and pseudostem diameter of resistant cultivar Yunjiao No. 1 increased by 14.87% and 12.51%, respectively. The fresh weight of the two cultivars increased by 20.66% and 36.68%, respectively, indicating that this biological agent has potential effects on plant growth. Analysis of the rhizosphere soil microbial communities of two different cultivars of banana plants showed that TR4 infection and B. amyloliquefaciens QST713 strain application significantly affected the bacterial and fungal diversity of Yunjiao No. 1, but not in the cultivar Brazilian. In addition, TR4 infection and QST713 application changed the bacterial community composition of both banana cultivars, and the fungal community composition of Yunjiao No. 1 also changed significantly. Relevance analysis indicated that the relative richness of Bacillus and Pseudomonas in the rhizosphere of both cultivars increased significantly after QST713 application, which had a good positive correlation with plant height, pseudostem girth, aboveground fresh weight, leaf length, and leaf width. Discussion: Therefore, the outcome of this study suggests that the biological agent QST713 strain has potential application in banana production for promoting plant growth and modification of soil microbial communities, particularly in the TR4-infected field.

15.
Regen Biomater ; 10: rbad079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020237

RESUMO

Cartilage tissue engineering is a promising strategy for repairing cartilage defects. However, achieving satisfactory cartilage regeneration in vitro and maintaining its stability in vivo remains a challenge. The key to achieving this goal is establishing an efficient cartilage regeneration culture system to retain sufficient active cells with physiological functions, generate abundant cartilage extracellular matrix (ECM) and maintain a low level of cartilage ECM degradation. The current chondrogenic medium (CM) can effectively promote cartilage ECM production; however, it has a negative effect on cell proliferation. Meanwhile, the specific c-Jun N-terminal kinase pathway inhibitor SP600125 promotes chondrocyte proliferation but inhibits ECM synthesis. Here, we aimed to construct a three-dimensional cartilage regeneration model using a polyglycolic acid/polylactic acid scaffold in combination with chondrocytes to investigate the effect of different culture modes with CM and SP600125 on in vitro cartilage regeneration and their long-term outcomes in vivo systematically. Our results demonstrate that the long-term combination of CM and SP600125 made up for each other and maximized their respective advantages to obtain optimal cartilage regeneration in vitro. Moreover, the long-term combination achieved stable cartilage regeneration after implantation in vivo with a relatively low initial cell-seeding concentration. Therefore, the long-term combination of CM and SP600125 enhanced in vitro and in vivo cartilage regeneration stability with fewer initial seeding cells and thus optimized the cartilage regeneration culture system.

16.
Nat Commun ; 14(1): 7632, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993447

RESUMO

The harsh urethral microenvironment (UME) after trauma severely hinders the current hydrogel-based urethral repair. In fact, four-dimensional (4D) consideration to mimic time-dependent physiological processes is essential for scarless urethral reconstruction, which requires balancing extracellular matrix (ECM) deposition and remodeling at different healing stages. In this study, we develop a UME-adaptable 4D hydrogel dressing to sequentially provide an early-vascularized microenvironment and later-antifibrogenic microenvironment for scarless urethral reconstruction. With the combination of dynamic boronic ester crosslinking and covalent photopolymerization, the resultant gelatin methacryloyl phenylboronic acid/cis-diol-crosslinked (GMPD) hydrogels exhibit mussel-mimetic viscoelasticity, satisfactory adhesion, and acid-reinforced stability, which can adapt to harsh UME. In addition, a temporally on-demand regulatory (TOR) technical platform is introduced into GMPD hydrogels to create a time-dependent 4D microenvironment. As a result, physiological urethral recovery is successfully mimicked by means of an early-vascularized microenvironment to promote wound healing by activating the vascular endothelial growth factor (VEGF) signaling pathway, as well as a later-antifibrogenic microenvironment to prevent hypertrophic scar formation by timing transforming growth factor-ß (TGFß) signaling pathway inhibition. Both in vitro molecular mechanisms of the physiological healing process and in vivo scarless urethral reconstruction in a rabbit model are effectively verified, providing a promising alternative for urethral injury treatment.


Assuntos
Hidrogéis , Procedimentos de Cirurgia Plástica , Animais , Coelhos , Hidrogéis/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização , Bandagens
17.
Front Bioeng Biotechnol ; 11: 1252790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818235

RESUMO

Introduction: The feasibility of using a steel decalcified bone matrix (DBM)-reinforced concrete engineered cartilage gel (ECG) model concept for in vivo cartilage regeneration has been demonstrated in preliminary experiments. However, the regenerated cartilage tissue contained an immature part in the center. The present study aimed to achieve more homogeneous regenerated cartilage based on the same model concept. Methods: For this, we optimized the culture conditions for the engineered cartilage gel-decalcified bone matrix (ECG-DBM) complex based on the previous model and systematically compared the in vitro chondrogenic abilities of ECG in the cartilage slice and ECG-DBM complex states. We then compared the in vivo cartilage regeneration effects of the ECG-DBM complex with those of an equivalent volume of ECG and an equivalent ECG content. Results and discussion: Significant increases in the DNA content and cartilage-specific matrix content were observed for the ECG-DBM complex compared with the ECG cartilage slice, suggesting that the DBM scaffold significantly improved the quality of ECG-derived cartilage regeneration in vitro. In the in vivo experiments, high-quality cartilage tissue was regenerated in all groups at 8 weeks, and the regenerated cartilage exhibited typical cartilage lacunae and cartilage-specific extracellular matrix deposition. Quantitative analysis revealed a higher chondrogenic efficiency in the ECG-DBM group. Specifically, the ECG-DBM complex achieved more homogeneous and stable regenerated cartilage than an equivalent volume of ECG and more mature regenerated cartilage than an equivalent ECG content. Compared with ECG overall, ECG-DBM had a more controllable shape, good morphology retention, moderate mechanical strength, and high cartilage regeneration efficiency. Further evaluation of the ECG-DBM complex after in vitro culture for 7 and 14 days confirmed that an extended in vitro preculture facilitated more homogeneous cartilage regeneration.

18.
ACS Omega ; 8(31): 27920-27931, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576626

RESUMO

Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.

19.
Biomater Sci ; 11(20): 6848-6861, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646188

RESUMO

Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.


Assuntos
Cálcio , Hemostáticos , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Aderências Teciduais/prevenção & controle , Antibacterianos/farmacologia
20.
Am J Addict ; 32(6): 593-605, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615548

RESUMO

BACKGROUND AND OBJECTIVES: Addictive behaviors are serious factors for mental health and usually increase during public crises. We identified the vulnerable characteristics for bad prognosis of addictive internet use across different periods of the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Self-reported questionnaires were delivered in three waves through jdh.com during the outbreak (n = 17,960), remission (n = 15,666), and dynamic zero (n = 12,158) periods of COVID-19 pandemic in China. Internet addiction degree was assessed using the Internet Addiction Test. The different progression groups were divided using a latent class growth model among 1679 longitudinal participants. Risk factors for bad progression were identified by two-step logistic regression. RESULTS: A total of 40.16% of participants reported an increase in the addictive degree of internet use compared with prepandemic. Across different COVID-19 periods, the overall trend of addictive internet use was downward among general Chinese study participants (Mslope = -1.56). Childhood traumatic experiences, deterioration of physical health, depression, and anxiety during remission and dynamic periods were the main risk factors for the bad progression of pandemic-induced addictive internet use. DISCUSSION AND CONCLUSIONS: Addictive internet use was remitted following relaxed control policies during the COVID-19 pandemic. Negative childhood experiences and bad mental status during the recovery period were harmful to coping with pandemic-related addictive internet use. SCIENTIFIC SIGNIFICANCE: Our findings profiled the general trend of addictive internet use and the vulnerable characteristics of its bad progression across different periods of the first wave of COVID-19 pandemic in China. Our findings provide valuable insights for preventing the long-term adverse effects of negative public events on Internet addiction.


Assuntos
Comportamento Aditivo , COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Uso da Internet , Comportamento Aditivo/epidemiologia , Comportamento Aditivo/psicologia , Fatores de Risco , China/epidemiologia , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...